Чтение RSS Все о РадиоЭлектроТехнике » РадиоЭлектроника » Остальное » Сравнение КПД синхронных и асинхронных понижающих преобразователей напряжения

Книги по радиоэлектронике

Новости партнеров

Малогабаритный частотомер с питанием от литиевого элемента
     Прототипом этого прибора послужил частотомер, описанный в статье И. Котова («Радио», 2008, № 2, с. 21, 22). Переделка свелась к замене батареи питания 6F22 литиевым ...
Microchip. Информацинный каталог. 2014
Название: Microchip. Информацинный каталог Год издания: 2014 Страниц: 88 Формат: djvu Размер: 17,34 MB Описание: Предлагаем вашему вниманию очередное издание информационного каталога ...
Microcontrollers From Assembly Language to C Using the PIC24 Family
Название: Microcontrollers From Assembly Language to C Using the PIC24 Family Автор: Robert Reese, J.W. Bruce, Bryan A. Jones Год издания: 2009 Страниц: 865 Формат: pdf Размер: 9,58 MB ...

Сравнение КПД синхронных и асинхронных понижающих преобразователей напряжения

 Опубликовано: 30-12-2014, 06:59  Комментариев: (0)


Выбор DC/DC-преобразователя для приложения может оказаться устрашающей задачей. Кроме того, что они доступны на рынке в большом количестве, проектировщик должен ещё и пойти на несметное число компромиссов. Обычно для источника питания важны размер, КПД, цена, температура, точность и переходные характеристики. Необходимость удовлетворять техническим требованиям ENERGY STAR® или критериям «green-mode» делает КПД по энергии всё более важным параметром. Разработчики стремятся повысить КПД без увеличения стоимости, особенно в приложениях крупномасштабной бытовой электроники, для которых уменьшение потребления энергии на 1 Вт может сэкономить МВт для энергетической системы. Полупроводниковая промышленность недавно выпустила недорогие DC/DC-преобразователи с синхронным выпрямлением, которые считаются более эффективными, чем асинхронные DC/DC-преобразователи. В данной статье сравниваются КПД, размер и стоимость синхронных и асинхронных преобразователей, используемых в бытовой электронике, при различных условиях работы. Показано, что синхронные понижающие преобразователи не всегда более эффективны.

Типичные применения

Чтобы показать тонкие различия между двумя типами преобразователей, было выбрано типичное применение для точечной нагрузки. Множество недорогих бытовых изделий используют 12-В шину, которая получает питание от нерегулируемого сетевого адаптера или от автономного источника питания. Выходные напряжения обычно лежат в диапазоне 1-3,3 В, выходные токи - до 3 А. Для сравнения действительных значений КПД при различных выходных токах и напряжениях были выбраны устройства Texas Instruments, приведённые в таблице 1. Номинальный выходной ток, уровень которого является характеристикой любого устройства, продаваемого на рынке, был взят прямо из листов технических данных (1, 2).

Таблица 1. Сравнение устройств

Номердетали ТОПОЛОГИЯ Диапазон входных напряжений, В Номинальный
TPS54325 Синхронное понижающее преобразование 4,5-18 3
TPS54331 Асинхронное понижающее преобразование 4,5-28 3

Принцип работы

На рисунке 1 показана типичная блок-схема для понижающего регулятора. Основные компоненты - это Q1, силовой МОП-транзистор верхнего плеча; L1, силовая катушка индуктивности, и C1, выходной конденсатор. Для синхронной понижающей схемы используется МОП-транзистор нижнего плеча (Q2).

В асинхронной понижающей схеме используется силовой диод (D1). В синхронном преобразователе, таком как TPS54325, в устройство встроен силовой МОП-транзистор нижнего плеча. Основным преимуществом синхронного выпрямителя является то, что падение напряжения на МОП-транзисторе нижнего плеча может быть ниже, чем падение напряжения на силовом диоде асинхронного преобразователя. При одинаковом уровне тока меньшее падение напряжения превращается в меньшее рассеяние мощности и больший КПД.





Выбор силового диода

Асинхронные преобразователи разработаны для работы с внешним силовым диодом (D1). При выборе силового диода разработчик должен учесть три ключевые характеристики: обратное напряжение, падение прямого напряжения и прямой ток. Во-первых, номинальное обратное напряжение должно быть, по крайней мере, на 2 В выше, чем максимальное напряжение в коммутационном узле. Во-вторых, для большего КПД падение прямого напряжения должно быть небольшим. В-третьих, номинальное значение пикового тока должно быть больше, чем максимальный выходной ток плюс половина пикового тока катушки индуктивности. При низкой продолжительности включения (то есть низких выходных напряжениях) D1 работает как блокирующий диод, который проводит больший ток, чем МОП-транзистор верхнего уровня. Четвёртое соображение состоит в том, чтобы убедиться, что корпус выбранного диода справится с рассеянием мощности. Для TPS54331 был выбран диод B340A, который имеет номинальное обратное напряжение 40 В, падение прямого напряжения 0,5 В, и номинальный прямой ток 3 А.

Для TPS54325 силовой диод не нужен, так как в микросхему встроен 70-мОм МОП-транзистор нижнего плеча. Интегрированный МОП-транзистор экономит место; но при этом увеличивается сложность управляющей схемы, чтобы гарантировать, что оба МОП-транзистора не будут открыты одновременно, что привело бы к закорачиванию входа на землю. Любая перекрывающаяся проводимость ключей приведёт к понижению КПД и может даже перегрузить и повредить систему.

Вычисления КПД

Для определения КПД DC/DC-преобразователя нужно рассчитать общее рассеивание мощности. Основной вклад в рассеивание мощности для DC/DC-преобразователя, работающего в режиме непрерывной проводимости (continious conduction mode, ССМ), дают потери на ключах верхнего и нижнего плечей и потери на собственный потребляемый ток ИС. Эти потери можно рассчитать по следующим формулам:

Уравнения 1-3 применимы как к синхронному,так и к асинхронному преобразователю в ССМ. Однако нужно учесть потери в МОП-транзисторе нижнего уровня для синхронного понижающего преобразователя (уравнение 4), в силовом диоде нижнего уровня (PD1) для асинхронного понижающего преобразователя (уравнение 5):

В уравнении 4 первый член соответствует потерям проводимости в МОП-транзисторе нижнего уровня, а второй - потерям проводимости во встроенном диоде. Ток, текущий через встроенный диод, примерно на порядок ниже по величине, чем ток, текущий через МОП-транзистор нижнего уровня, и при 2 А им можно пренебречь.

Данные уравнения показывают, что на КПД при полной нагрузке влияют несколько факторов, такие как сопротивление между стоком и истоком, прямое напряжение между стоком и истоком, продолжительность включения, частота и времена МОП-транзистора. Потери переменного и постоянного тока в катушке индуктивности и эквивалентном последовательном сопротивлении выходной ёмкости аналогичны, так как для обоих устройств можно использовать одинаковый LC-фильтр. Для DC/DC-преобразователя продолжительность включения задана, и выбирать можно только сопротивление между стоком и истоком, падение прямого напряжения и частоту переключения. Обычно времена включения и выключения МОП-транзистора не указываются в листах технических данных, но их важно учитывать, так как чем они быстрее, тем меньше мощности рассеивается. Однако при слишком быстром включении мощного МОП-транзистора в коммутационном узле могут возникать переходные помехи.

Для улучшения тепловых характеристик важно уменьшать время коммутации, что позволит выбрать более дешёвый корпус для МОП-транзистора с меньшей мощностью и более высоким сопротивлением между стоком и истоком.

КПД при высоких нагрузках

Были созданы две схемы с устройствами, приведёнными в таблице 2, так, чтобы их эффективности можно было сравнить. Устройства используют одинаковый LC-фильтр. Несмотря на то, что устройства имели несколько различные фиксированные частоты переключения, это не имело значительного влияния на КПД схемы и не могло изменить выводов данного эксперимента. Входное напряжение было выбрано 12 В и измерения КПД проводились просто при изменении выходных напряжений.

Таблица 1. Сравнение устройств

Номердетали ТОПОЛОГИЯ Диапазон входных напряжений, В Номинальный
TPS54325 Синхронное понижающее преобразование 4,5-18 3
TPS54331 Асинхронное понижающее преобразование 4,5-28 3

На рисунке 2 показан КПД обоих устройств с 12-В входом и 1,5-В выходом. Рисунок чётко показывает, что TPS54325 при полной нагрузке имеет более высокий КПД. Так как продолжительность включённого состояния составляла 12,5%, силовой диод асинхронного варианта с падением прямого напряжения 0,5 В рассеивал больше энергии, чем 70-мОм МОП-транзистор, а также несмотря на более высокое сопротивление между истоком и стоком ключа верхнего плеча в схеме с TPS54325.

 

На рисунке 3 показан КПД обоих устройств с 12-В входом и 2,5-В выходом. Очевидно, что КПД TPS54331 значительно вырос.

В этом случае продолжительность включённого состояния была 21% и оба КПД при полной нагрузке были практически одинаковыми. Силовой диод асинхронной схемы проводил реже, а МОП-транзистор верхнего плеча с низким сопротивлением включения проводил чаще. Когда рассеивание на силовом диоде нижнего плеча уменьшилось из-за уменьшения скважности, асинхронное устройство стало более эффективным.

КПД при малых нагрузках

Для некоторых приложений необходимость в КПД при малой нагрузке перевешивает необходимость в КПД при высокой нагрузке. При низких нагрузках асинхронные понижающие преобразователи переключаются в режим прерывистой проводимости (РПП). В асинхронном понижающем преобразователе ток катушки индуктивности течёт только в одном направлении. В синхронном понижающем преобразователе ток течёт в обоих направлениях, и мощность рассеивается при протекании обратного тока. На рисунке 4 показана разница между формами сигналов тока катушки индуктивности в РНП по сравнению с РПП.

TPS54331 имеет функцию пропуска импульсов, называемую Eco-modeTM, которая повышает КПД при низкой нагрузке. Данный режим работы включает мощный МОП-транзистор реже, что приводит к понижению потерь на переключение. Разница в КПД при низкой нагрузке, обусловленная функцией Eco-mode TPS54331, и его низким собственным потребляемым током при работе, показана на рисунках 2 и 3. Более подробную информацию об Eco-mode можно найти в (1).

Цена и размеры

Синхронный преобразователь со встроенным МОП-транзистором обладает такими преимуществами, как уменьшенный размер, меньшее число деталей и более простая конструкция. Но если главной целью является уменьшение цены, то асинхронный преобразователь с внешним силовым диодом может быть менее дорогим, чем синхронный понижающий преобразователь.

Заключение

Синхронные понижающие преобразователи недавно стали очень популярными и широко доступными. Однако они не всегда более эффективны. Асинхронные понижающие преобразователи могут иметь аналогичный КПД при большой скважности и низкой нагрузке. Обратив внимание на технические характеристики, особенно сопротивление между стоком и истоком и собственный потребляемый ток, разработчик может сделать лучший выбор для конкретного применения.

Литература

  1. 4.5-V to 18-V, 3-A Output Synchronous Step Down Switcher with Integrated FET (SWIFT™), TPS54325 Data Sheet (slvs932a)

  2. 3A, 28V Input, Step Down SWIFT™ DC/DC Converter with Eco-mode™, «TPS54331 Data Sheet (slvs839b)